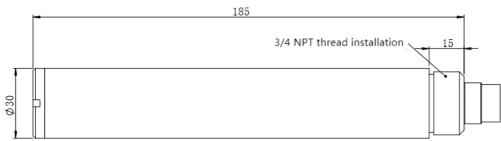


KWS-960C Online Turbidity Sensor

Introduction

The KWS-960C online turbidity sensor is designed and manufactured based on the principle of scattered light turbidity measurement. When a beam of light is projected into a water sample, the light is scattered due to the turbidity substances in the water sample. The turbidity in the water sample is calculated by measuring the intensity of the scattered light in the direction perpendicular to the incident light and comparing it with the internal calibration value. The final value is output after linearization processing.

Feature


- 90° angle scattered light principle, built-in temperature sensor
- Support RS-485, Modbus/RTU protocol
- Optical fiber structure, strong resistance to external light interference
- Infrared LED light source with high stability
- IP68 protection, water depth within 20 meters
- Convenient, fast, stable and easy to maintain

Model	KWS-960		
Principle	Light scattering method		
Range/Resolution	0~20.00NTU 0.01NTU/0.1℃		
	0~200.0NTU	0.01NTU/0.1℃	
	0~1000.0NTU	0.1NTU/0.1℃	
Precision	±3% or ±1.5NTU(0~20.00NTU)		
	±3% or ±2NTU(0~200.0NTU)		
	±5% or ±3NTU(0~1000.01	NTU)	
Response Time (T90)	< 60s		
Lowest Detection Limit	0.01 (0-20NTU)		
	0.3NTU		
Calibration Mode	Two-point calibration		
Temperature Compensation	Automatic temperature compensation (Pt1000)		
Output	RS-485(Modbus/RTU)		
Working Conditions	0~50℃, <0.2MPa		
Storage Temperature	-5~65℃		
Installation	Immersion mount with 3/4NPT pipe thread		
Cable Length	5 meters, other lengths can be customized		
Power Consumption	0.2W@12V		
Power Supply	12~24VDC		
Protection Grade	IP68		

Technical Specifications

Dimension

Note: The sensor joint is M16-5 core waterproof joint male head

Installation and Electrical Connection

Installation

Installation distance requirements: keep above 5cm with side wall and above 10cm with bottom.

Wiring

- a) Red- power (12 ~ 24V)
- b) Black- ground (GND)
- c) Blue- 485A
- d) White- 485B

After wiring completed, it should be carefully checked to avoid incorrect connections before powering up.

Cable specification: Considering that the cable is immersed in water (including sea water) for a long time or exposed to the air, the cable has certain corrosion resistance. The outer diameter of the cable is $\Phi 6$ mm and all interfaces are waterproof.

Maintenance

1. Use and maintenance

1.1 Maintenance schedule

The cleanliness of the measuring window is very important for maintaining accurate readings.

Maintenance task	Recommended maintenance frequency	
Calibrate sensors	According to the maintenance schedule	
(if required by the competent authority)	required by the competent department	

1.2 Maintenance method

• Sensor outer surface: clean the outer surface of the sensor with tap water, if there is still debris residue, wipe with wet soft cloth, for some stubborn dirt, you can add some household washing liquid to tap water to clean.

• Check the cable of the sensor: the cable should not be tightened when it is working properly, otherwise it is easy to break the wire inside the cable and make the sensor unable to work properly.

1.3 Matters need attention

The probe contains sensitive optical and electronic components. Make sure the probe is not subjected to severe mechanical impact. There are no components inside the probe that need to be maintained by the user.

2. Calibration of sensors

- Zero calibration: take proper amount of zero turbidity solution with large beaker, put the sensor vertically in the solution, the front end of the sensor is at least 10 cm from the bottom of the beaker, and the zero calibration will be carried out after the value is stabilized for 3-5 minutes. The instructions refer to the appendix.
- Slope calibration: the sensor probe is placed in the standard solution, the front end of the sensor is at least 10 cm from the bottom of the beaker, and the slope calibration is carried out after 3-5 minutes of numerical stability. The instructions refer to the appendix.

3. Frequently asked questions

Wrong	Probable cause	Resolvent
The operating interface cannot connect or does not display the	The measured value is too high, too low, or the numerical value remains unstable.	Reconnect the controller and cable
measurement results	Cable failure	Please contact us.
The measured value is too high, too low, or the numerical value remains unstable.	The sensor window is attached to the external object	Clean the window surface of the sensor

Quality and Service

Quality assurance

• The quality inspection department has standardized inspection procedures, equipped with advanced and complete testing equipment and methods, and strictly inspects according to the procedures, conducts 72-hour aging tests and stability tests on products, and does not allow any unqualified products to leave the factory.

• The receiving party directly returns the product batch with a failure rate of 2%, and all the costs incurred are borne by the supplier. The reference standard refers to the product description provided by the supplier.

• Guarantee the quantity of goods and the speed of shipment.

Service commitment

The company provides local after-sales service within one year from the date of sale, but does not include damage caused by improper use. If repair or adjustment is required, please return it, but the shipping cost must be conceited. Damaged on the way, the company will repair the damage of the instrument for free.

Appendix data communication

1. Data Format

The default data format for Modbus communication is: 9600, n, 8, 1 (baud rate 9600bps, 1 start bit, 8 data bits, no parity, 1 stop bit).

2. Information Frame Format (xx for one byte).

a) Read o	data ins	truction frame		
07	03	XX XX	XX XX	XX XX
address	FC	Register start address	s Number of registers	CRC check code
				(low bytes in front)
b) Read o	data res	sponse frame		
07	03	XX	XXXX	XX XX
address	FC	Bytes	Response data	CRC check code
				(low bytes in front)
c) Write c	lata ins	truction frame		
07	06	XX XX	XX XX	XX XX
address	FC	Register address	read-in data	CRC check code
				(low bytes in front)
d) Write c	lata res	ponse frame (co-write	data instruction frame)	
07	06	XX XX	XX XX	XX XX
address	FC	Register address	read-in data	CRC check code
				(low bytes before)

3. Register address

Register	Designation	Explain	Number of	Access
address			registers	mode
40001 (0x0000)	Measured value + temperature	4 double-byte integers, namely, the measured value, the number of decimal places of the measured value, the temperature value, and the number of decimal places of	4 (8 bytes)	Read
		the temperature value.		
44097 (0x1000)	Zero calibration	The 0-20NTU range is calibrated in 0-10NTU turbidity solution, and the written data is the actual value of the standard solution \times 100; the 0-100NTU range is calibrated in 0-20NTU turbidity solution, and the	1(2 bytes)	Write/ Read
		written data is the actual value of		

XIAN KACISE OPTRONICS TECH CO., LTD.

		the standard solution \times 10; the		
		0-1000NTU range is calibrated in		
		0-200NTU turbidity solution, and		
		the written data is the actual value		
		of the standard solution \times 10; the		
		read data is the zero point offset.		
		The 0-20NTU range is calibrated in		
		10-20NTU turbidity solution, and		
44101	Slope	the written data is the actual value		
(0x1004)	calibration	of the standard solution \times 100; the	1 (2 bytes)	Write/ Read
		0-100NTU range is calibrated in		
		20-100NTU turbidity solution, and		
		the written data is the actual value		
		of the standard solution \times 10; the		
		0-1000NTU range is calibrated in		
		200-1000NTU turbidity solution,		
		and the written data is the actual		
		value of the standard solution \times 10;		
		the read data is the slope value ×		
		1000.		
44113	Temperature	When calibrated in solution, the		
(0x1010)	correction	written data is the actual		
		temperature value \times 10; the read	1(2 bytes)	Write/ Read
		data is the temperature calibration		
		offset × 10.		
48195	Sensor	The default is 7, and the write data	1(2 bytes)	Write/ Read
(0x2002)	address	range is 1-255.		
48196	Baud rate	Default is 9600. 0-9600, 1-19200.	1 (2 bytes)	Write/ Read
(0x2003)				
		The calibration value is restored to		
48225		the default value, and the written		
(0x2020)	Reset sensor	data is 0. Note that the sensor	1 (2 bytes)	Write
		needs to be calibrated again after		
		being reset before it can be used.		
			I	

4. Command example

a) Start measurement instructions

Function: Obtain the turbidity value and temperature of the measuring probe; the unit of temperature is Celsius, and the unit of turbidity is NTU.

Request frame: 07 03 00 00 00 04 44 6F

Response frame: 07 03 08 01 02 00 01 00 B0 00 01 94 B4

Example of reading:

Turbidity value	Temperature scale
01 02 00 01	00 B0 00 01

For example: turbidity value 01 02 means hexadecimal reading turbidity value, 00 01 means turbidity value with 1 decimal point, converted to decimal value 25.8.

The temperature value 00 B0 represents the hexadecimal reading temperature value, and 00 01 represents the temperature value with a decimal point converted to a decimal value of 17.6.

b) Calibration instructions

Zero calibration

Function: Set the zero calibration value of the turbidity of the sensor; here the zero calibration is performed in zero turbidity water;

Request frame: 07 06 10 00 00 00 8C 6E Response frame: 07 06 10 00 00 00 8C 6E

Slope calibration

Function: Set the slope calibration value of the sensor turbidity.

For sensor with a range of 0 to 1000 NTU and 0 to 100 NTU, the slope calibration example is as follows (calibrated in 1000 NTU standard solution, the written value is 1000x10, i.e. 0x2710): Request frame: 07 06 10 04 27 10 D6 91 Response frame: 07 06 10 04 27 10 D6 91

For sensor with a range of 0 to 20 NTU, the slope calibration example is as follows (calibrated in 20 NTU standard solution, the written value is 20x100, i.e. 0x07D0): Request frame: 07 06 10 04 07 D0 CF 01 Response frame: 07 06 10 04 07 D0 CF 01

c) Set the device ID address:

Role: set the MODBUS device address of the electrode; Change the device address 06 to 01. The example is as follows Request frame: 07 06 20 02 00 01 E2 6C Response frame: 07 06 20 02 00 01 E3 6C

5. Error response

If the sensor does not execute the upper computer command correctly, the following format information is returned:

XIAN KACISE OPTRONICS TECH CO., LTD.

definition	address	FC	CODE	CRC check
data	ADDR	COM+80H	ХХ	CRC 16
Bytes	1	1	1	2

a) CODE: 01 – Functional code error

03 - Data error

b) COM: Received function code